RED-ML: a novel, effective RNA editing detection method based on machine learning

نویسندگان

  • Heng Xiong
  • Dongbing Liu
  • Qiye Li
  • Mengyue Lei
  • Liqin Xu
  • Liang Wu
  • Zongji Wang
  • Shancheng Ren
  • Wangsheng Li
  • Min Xia
  • Lihua Lu
  • Haorong Lu
  • Yong Hou
  • Shida Zhu
  • Xin Liu
  • Yinghao Sun
  • Jian Wang
  • Huanming Yang
  • Kui Wu
  • Xun Xu
  • Leo J. Lee
چکیده

With the advancement of second generation sequencing techniques, our ability to detect and quantify RNA editing on a global scale has been vastly improved. As a result, RNA editing is now being studied under a growing number of biological conditions so that its biochemical mechanisms and functional roles can be further understood. However, a major barrier that prevents RNA editing from being a routine RNA-seq analysis, similar to gene expression and splicing analysis, for example, is the lack of user-friendly and effective computational tools. Based on years of experience of analyzing RNA editing using diverse RNA-seq datasets, we have developed a software tool, RED-ML: RNA Editing Detection based on Machine learning (pronounced as "red ML"). The input to RED-ML can be as simple as a single BAM file, while it can also take advantage of matched genomic variant information when available. The output not only contains detected RNA editing sites, but also a confidence score to facilitate downstream filtering. We have carefully designed validation experiments and performed extensive comparison and analysis to show the efficiency and effectiveness of RED-ML under different conditions, and it can accurately detect novel RNA editing sites without relying on curated RNA editing databases. We have also made this tool freely available via GitHub . We have developed a highly accurate, speedy and general-purpose tool for RNA editing detection using RNA-seq data. With the availability of RED-ML, it is now possible to conveniently make RNA editing a routine analysis of RNA-seq. We believe this can greatly benefit the RNA editing research community and has profound impact to accelerate our understanding of this intriguing posttranscriptional modification process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

An Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network

In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

A Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection

Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...

متن کامل

A Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders

Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017